This test is closed-book and closed-notes. No calculator is allowed for this test. For full credit show all of your work (legibly!), unless otherwise specified.

For the purposes of this exam, all arithmetic results should be simplified as far as possible; unreduced results, where necessary, should be phrased in terms of standard arithmetic operators and natural logarithms.

1. **(8 points)** Evaluate the following limits; when a limit can not be evaluated, explicitly say so.

 (a) **(2 points)** \(\lim_{t \to -1} 3^t \)

 (b) **(2 points)** \(\lim_{x \to 5} \frac{x^2 - 3x - 10}{x^2 - 10x + 25} \)

 (c) **(2 points)** \(\lim_{r \to 3} \frac{r^3 - 1}{r^2 + r} \)

 (d) **(2 points)** \(\lim_{s \to -\infty} \frac{3s^3 - 2s^2 + 200}{3 - 7s^4} \)

2. **(6 points)** Let \(f(x) = \begin{cases}
 x^2 & \text{if } x < 5 \\
 50 - ax & \text{if } 5 \leq x < 8 \\
 \sqrt{x + b} & \text{if } x \geq 8
\end{cases} \)

 What choices of \(a \) and \(b \) will make this function continuous?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/ 8</td>
</tr>
<tr>
<td>2</td>
<td>/ 6</td>
</tr>
<tr>
<td>3</td>
<td>/ 8</td>
</tr>
<tr>
<td>4</td>
<td>/ 7</td>
</tr>
<tr>
<td>5</td>
<td>/ 4</td>
</tr>
<tr>
<td>6</td>
<td>/ 6</td>
</tr>
<tr>
<td>7</td>
<td>/ 6</td>
</tr>
<tr>
<td>8</td>
<td>/ 5</td>
</tr>
<tr>
<td>9</td>
<td>/ (3)</td>
</tr>
<tr>
<td>Σ</td>
<td>/ 50</td>
</tr>
</tbody>
</table>
3. (8 points) Determine the domains of the following functions:

(a) (2 points) \(f(x) = \ln(7 - 2x) \).

(b) (2 points) \(g(t) = \frac{\sqrt{t+6}}{t^2-9} \).

(c) (2 points) \(h(r) = \sqrt{r^2 + 9} \).

(d) (2 points) \(q(t) = \sqrt{t} + \frac{7t}{3-2t} \).

4. (7 points) For the plot of \(g(x) \) shown below, indicate whether or not each of the following quantities can be evaluated. If they can be evaluated, compute their values. If they cannot be evaluated, explicitly say so.

\[
\begin{align*}
\lim_{x \to 0^-} g(x) \\
\lim_{x \to 0^+} g(x) \\
g(0) \\
\lim_{x \to 2^-} g(x) \\
\lim_{x \to 2^+} g(x) \\
g(2)
\end{align*}
\]
5. (4 points) Given the function \(f(x) = \frac{4x^2 - 16}{x-3} \), answer the following questions preparatory to sketching the functions.

(a) (2 points) What is the domain of the function?

(b) (2 points) Describe, either in words or symbolically, the long-term behavior of the function in each direction.

6. (6 points) Common stock in the RAMJAC corporation is expected to increase in value by 3% each year. On the basis of this information, we have made a $5000 investment in RAMJAC stock.

(a) (3 points) Create a function \(f(t) \) to describe the expected value of our investment \(t \) years from now.

(b) (3 points) We will cash out our investment when it reaches $6500; based on our projection of the stock’s change in value, when can we expect this to happen?
7. (6 points) Let \(f(x) = 2 + x - 3x^2 \).

(a) (3 points) Using the difference quotient, determine the formula for \(f'(x) \).

(b) (3 points) Find the equation of the tangent line to \(f(x) \) at the point \((1, 0)\).

8. (5 points) Let \(f(x) = 5 - 3x \).

(a) (1 point) Find \(\lim_{x \to 2} f(x) \).

(b) (4 points) Using epsilon-delta methods, justify your result above.

9. (3 point bonus) Using an appropriate analogue of an epsilon-delta proof, formally prove on the back of this sheet that \(\lim_{x \to -\infty} e^{(x^2)} = +\infty \).