1. **(12 points)** Compute the following derivatives:

(a) **(4 points)** Given \(y = x^2 e^{\sec x} \), find \(\frac{dy}{dx} \).

This is a product rule stacked with a chain rule (since \(e^{\sec x} \) is a composition). Let us pre-emptively assign \(u = \sec x \), so that

\[
\frac{dy}{dx} = \frac{d}{dx} \left(x^2 e^{\sec x} \right) \\
= \left(\frac{d}{dx} x^2 \right) e^{\sec x} + x^2 \frac{d}{dx} e^u \\
= 2xe^{\sec x} + x^2 \frac{du}{dx} \frac{d}{du} e^u \\
= 2xe^{\sec x} + x^2 (\sec x \tan x)e^u \\
= 2xe^{\sec x} + x^2 \sec x \tan x e^{\sec x}
\]

(b) **(4 points)** For \(f(t) = \cos \left(\frac{e^t - 2}{\arcsin t} \right) \), find \(f'(t) \).

This is a chain rule problem whose internal calculation is itself a quotient rule. Let us pre-emptively assign \(u = \frac{e^t - 2}{\arcsin t} \), and then

\[
f'(t) = \frac{d}{dt} \cos \left(\frac{e^t - 2}{\arcsin t} \right) \\
= \frac{d}{dt} \cos u \\
= \frac{du}{dt} \frac{d}{du} \cos u \\
= \left(\frac{\arcsin t \frac{d}{dt} (e^t - 2) - (e^t - 2) \frac{d}{dt} \arcsin t}{(\arcsin t)^2} \right) (-\sin u) \\
= \left(\frac{\arcsin t e^t - (e^t - 2) \frac{1}{\sqrt{1-t^2}}}{(\arcsin t)^2} \right) (-\sin \left(\frac{e^t - 2}{\arcsin t} \right))
\]

(c) **(4 points)** Compute \(\frac{d}{d\theta} \sin(\theta + \ln \theta) \).

This is a chain rule problem; let \(u = \theta + \ln \theta \), and then:

\[
\frac{d}{d\theta} \sin(\theta + \ln \theta) = \frac{d}{d\theta} \sin u \\
= \frac{du}{d\theta} \frac{d}{du} \sin u \\
= \left(1 + \frac{1}{\theta} \right) \cos u \\
= \left(1 + \frac{1}{\theta} \right) \cos(\theta + \ln \theta)
\]
2. (4 points) Given the equality \(x \sin y = 1 - y^2 \), find a formula for \(\frac{dy}{dx} \) by implicit differentiation.

Differentiating both sides of the equation with respect to \(x \):

\[
\frac{d}{dx}(x \sin y) = \frac{d}{dx}(1 - y^2)
\]

\[
\left(\frac{d}{dx}x \right) \sin y + x \frac{d}{dx} \sin y = - \frac{d}{dx} y^2
\]

\[
\sin y + x \frac{dy}{dx} \cos y = -\frac{dy}{dx} 2y
\]

\[
x \frac{dy}{dx} \cos y + 2y \frac{dy}{dx} = -\sin x
\]

\[
(x \cos y + 2y) \frac{dy}{dx} = -\sin x
\]

\[
\frac{dy}{dx} = \frac{-\sin x}{x \cos y + 2y}
\]

3. (4 points) An air compressor which delivers 10 cubic feet per minute is being used to inflate a spherical balloon of volume \(V \) and radius \(r \) which is currently 8 feet in radius; we wish to know how quickly the radius is increasing. Calculate \(\frac{dr}{dt} \) below, using the facts: \(V = \frac{4}{3} \pi r^3 \), \(\frac{dV}{dt} = 10 \), \(r = 8 \) currently.

We differentiate both sides of the expression \(V = \frac{4}{3} \pi r^3 \) with respect to \(t \), and then algebraically isolate \(\frac{dr}{dt} \).

\[
\frac{dV}{dt} = \frac{d}{dt} \frac{4}{3} \pi r^3
\]

\[
\frac{dV}{dt} = \frac{dr}{dt} \frac{4}{3} \pi r^2 \cdot \frac{dr}{dt}
\]

\[
\frac{dV}{dt} = \frac{4}{3} \pi r^2 \frac{dr}{dt}
\]

\[
\frac{dr}{dt} = \frac{\frac{dV}{dt}}{4 \pi r^2}
\]

and since \(\frac{dV}{dt} = 10 \) and the current value of \(r \) is 8, we may conclude that the current value of \(\frac{dr}{dt} \) is \(\frac{10}{4 \pi (8^2)} = \frac{10}{256 \pi} = \frac{5}{128 \pi} \).

4. (2 point bonus) If \(n \) is a positive integer, find a general formula for \(\frac{d^n}{dx^n}(x^{n-1} \ln x) \) on the back of this page.
We might look at some specific examples, deriving each example from its predecessor:

\[
\frac{d}{dx} \ln x = \frac{1}{x}
\]

\[
\frac{d^2}{dx^2} (x \ln x) = \frac{d}{dx} \left(\ln x + \frac{x}{x} \right) = \frac{d}{dx} (\ln x + 1) = 1 \cdot \frac{1}{x} = \frac{1}{x}
\]

\[
\frac{d^3}{dx^3} (x^2 \ln x) = \frac{d^2}{dx^2} \left(2x \ln x + \frac{x^2}{x} \right) = \frac{d^2}{dx^2} (2x \ln x + x) = 2 \cdot \frac{1}{x} = \frac{2}{x}
\]

\[
\frac{d^4}{dx^4} (x^3 \ln x) = \frac{d^3}{dx^3} \left(3x^2 \ln x + \frac{x^3}{x} \right) = \frac{d^3}{dx^3} (3x^2 \ln x + x^2) = 3 \cdot \frac{2}{x} = \frac{6}{x}
\]

\[
\frac{d^5}{dx^5} (x^4 \ln x) = \frac{d^4}{dx^4} \left(4x^3 \ln x + \frac{x^4}{x} \right) = \frac{d^4}{dx^4} (3x^3 \ln x + x^3) = 4 \cdot \frac{6}{x} = \frac{24}{x}
\]

and the pattern that emerges is that after taking one of the \(n \) derivatives requested of \(x^{n-1} \ln x \), we are left with \(\frac{d^{n-1}}{dx^{n-1}} ((n-1)x^{n-2} \ln x + x^{n-2}) \). The second term of this sum can be easily seen to be zero — hit \(x^{n-2} \) with \(n-1 \) derivatives and it will reach zero — while the first term of this sum looks a lot like the original value we were looking at, but with all exponents decreased by 1. If we repeat this process \(n - 1 \) times, we would get that

\[
\frac{d^n}{dx^n} (x^{n-1} \ln x) = \frac{(n-1)(n-2)(n-3) \cdots 2 \cdot 1}{x}
\]