1.1.25. If $f(x)=3 x^{2}-x+2$, find $f(2), f(-2), f(a), f(-a), f(a+1), 2 f(a), f(2 a), f\left(a^{2}\right),[f(a)]^{2}$, and $f(a+h)$.
1.1.27. Evaluate the difference quotient $\frac{f(3+h)-f(3)}{h}$ for the function $f(x)=4+3 x-x^{2}$. Simplify your answer.
1.1.29. Evaluate the difference quotient $\frac{f(x)-f(a)}{x-a}$ for the function $f(x)=\frac{1}{x}$. Simplify your answer.
1.1.31. Find the domain of $f(x)=\frac{x+4}{x^{2}-9}$.
1.1.33. Find the domain of $f(t)=\sqrt[3]{2 t-1}$.
1.1.35. Find the domain of $h(x)=\frac{1}{\sqrt[4]{x^{2}-5 x}}$.
1.1.37. Find the domain of $F(p)=\sqrt{2-\sqrt{p}}$.
1.1.47. Find the domain and sketch the graph of $f(x)=\left\{\begin{array}{l}x+2 \text { if } x<0 \\ 1-x \text { if } x \geq 0\end{array}\right.$.
1.1.49. Find the domain and sketch the graph of $f(x)=\left\{\begin{array}{r}x+2 \text { if } x \leq-1 \\ x^{2} \text { if } x>-1\end{array}\right.$.
1.1.51. Find an expression for the function whose graph is the line segment joining ther points $(1,-3)$ and $(5,7)$.
1.1.57. A rectangle has perimeter 20. Express the area of the rectangle as a function of the length of one of its sides.
1.1.61. An open rectangular box with volume of 2 cubic meters has a square base. Express the surface area of the box as a function of the length of a side of the base.
1.1.65. In a certain state the maximum speed permitted on freeways is 65 mph and the minimum speed is 40 mph . The fine for violating these limits is $\$ 15$ for every mile per hour above or below the limits. Express the amount of the fine as a function $F(x)$ of the driving speed.
1.2.5. Find an equation for the family of linear functions with slope 2 , and sketch several members of the family. Find an equation for the family of linear funtions such that $f(2)=1$ and sketch several members of the family. Which funciton belongs to both families?
1.2.7. What do all members of the fmaily of linear functions $f(x)=c-x$ have in common? Sketch several members of the family.
1.2.9. Find an expresisons for a cubic function f such that $f(1)=6$ and $f(-1)=f(0)=f(2)=0$.
1.2.13. The relationship between the Fahrenheit and Celsius temperature scales is given by the linear function $F=\frac{9}{5} C+32$. What is the slope of this function, and what does it represent? What is the F-intercept of this function and what does it represent?
1.2.17. At the surface of the ocean, the water pressure is 15 pounds per square inch; below the surface, the water pressure increases by 4.34 pounds per square inch for every 10 feet of descent. Express the water pressure as a function of depth, and determine at which depth the pressure reaches 100 pouds per square inch.
1.3.1. For a given function f, write equations for the functions whose graphs are the following transformations of f 's graph:

- shift three units upwards.
- shift three units downwards.
- shift three units to the right.
- shift three units to the left.
- reflect about the x-axis.
- reflect about the y-axis.
- stretch vertically by a factor of 3 .
1.3.9. Graph the function $y=\frac{1}{x+2}$ by hand, not by plotting points, but by transforming a standard fucntion's graph.
1.3.13. Graph the function $y=\sqrt{x-2}-1$ by hand, not by plotting points, but by transforming a standard fucntion's graph.
1.3.21. Graph the function $y=|x-2|$ by hand, not by plotting points, but by transforming a standard fucntion's graph.
1.3.23. Graph the function $y=|\sqrt{x}-1|$ by hand, not by plotting points, but ny transforming a standard fucntion's graph.
1.3.31. For $f(x)=x^{2}-1$ and $g(x)=2 x+1$, find $f \circ g, g \circ f, f \circ f$, and $g \circ g$, and identify their domains.
1.3.35. For $f(x)=x+\frac{1}{x}$ and $g(x)=\frac{x+1}{x+2}$, find $f \circ g, g \circ f, f \circ f$, and $g \circ g$, and identify their domains.
1.3.41. Express $F(x)=\left(2 x+x^{2}\right)^{4}$ in the form $f \circ g$.
1.3.43. Express $F(x)=\frac{\sqrt[3]{x}}{1+\sqrt[3]{x}}$ in the form $f \circ g$.
1.3.45. Express $v(t)=\sec \left(t^{2}\right) \tan \left(t^{2}\right)$ in the form $f \circ g$.
1.R.TF1. Determine whether the statement "If f is a function, then $f(s+t)=f(s)+f(t)$ " is true or false. If true, explain why; if walse, explain why or give a counterexample.
1.R.TF3. Determine whether the statement "If f is a function, then $f(3 x)=3 f(x)$ " is true or false. If true, explain why; if walse, explain why or give a counterexample.
1.R.TF5. Determine whether the statement "A vertical line intersects the graph of a function at most once" is true or false. If true, explain why; if walse, explain why or give a counterexample.
1.R.E3. If $f(x)=x^{2}-2 x+3$, evaluate the difference quotient $\frac{f(a+h)-f(a)}{h}$.
1.R.E5. Find the domain and range of $f(x)=\frac{2}{3 x-1}$.
1.R.E9. If $y=f(x)$ has a given graph, describe how the graphs of the following functions can be obtained from the graph of f :
- $y=f(x)+8$.
- $y=f(x+8)$.
- $y=1+2 f(x)$.
- $y=f(x-2)-2$.
- $y=-f(x)$.
- $y=f^{-1}(x)$.
1.R.E11. Use transformations to sketch the graph of $y=-\sin 2 x$.
1.R.E13. Use transformations to sketch the graph of $y=\frac{1}{2}\left(1+e^{x}\right)$.
1.R.E15. Use transformations to sketch the graph of $y=\frac{1}{x+2}$.

