
MATH 311-02 Notes Introduction to Higher Math

Even when we don’t have an explicit formula for a recurrence, we can often work out valuable
information about it using inductive methods:

Proposition 1. Let bn be given by a recurrence relation: b1 = 1, b2 = 2, and bn = nbn−1 + bn−2 for
n > 2. For positive integers n, 2 | bn if and only if 2 | n.

Proof. Let P (n) be the assertion that 2 | bn if and only if 2 | n; alternatively, it could be phrased as
the assertion that bn and n have the same parity. The base cases P (1) and P (2) are easily verified:
P (1) is odd as is 1, and P (2) is even as is 2.

Now let us fix a k ≥ 2, and inductively assume that P (1), P (2), . . . , P (k) are all true. Specifically,
we will use the facts that P (k) and P (k−1) are true below. Now we have two cases: either 2 | (k+1),
in which case our goal is to show that 2 | bk+1, or 2 - (k + 1), in which case our goal is to show that
2 - bk+1. We address these casewise:

Case I: 2 | k + 1 (a.k.a. k + 1 is even). Since k + 1 is even, k is odd and k − 1 is even, and
since we presumed P (k) and P (k− 1) to be true, it thus respectively follows that bk is odd and bk−1

is even. Then, we note that bk+1 = (k + 1)bk + bk−1; this is a sum of a product of an even and odd
number with an even number; the result of such a computation is even, so 2 | bk+1.

Case II: 2 - k + 1 (a.k.a. k + 1 is odd). Since k + 1 is odd, k is even and k − 1 is odd, and
since we presumed P (k) and P (k− 1) to be true, it thus respectively follows that bk is even and bk−1

is odd. Then, we note that bk+1 = (k + 1)bk + bk−1; this is a sum of a product of an odd and even
number with an odd number; the result of such a computation is odd, so 2 - bk+1.

We can try this with an even more complicated recurrence. Here’s one which doesn’t have a
specific order, but is a recurrence relation, and is actually a quite significant set of numbers:

Definition 1. The Catalan numbers C1, C2, C3, . . . are given by the recurrence relation:

C1 = 1

Cn =
n−1∑
i=1

CiCn−i for n > 1

so, for example, we can work out the first few Catalan numbers:

C1 = 1

C2 = C1C1 = 1 · 1 = 1

C3 = C2C1 + C1C2 = 1 · 1 + 1 · 1 = 2

C4 = C3C1 + C2C2 + C1C3 = 2 · 1 + 1 · 1 + 1 · 2 = 5

C6 = C4C1 + C3C2 + C2C3 + C1C4 = 5 · 1 + 2 · 1 + 1 · 2 + 1 · 5 = 14

and the next few are 42, 132, 429, 1430.
We can prove a couple of things about the Catalan numbers. For instance, their growth rate

appears to be quite fast, which we can quantify pretty painlessly by showing that it’s at least expo-
nential:

Proposition 2. For every positive integer n, Cn ≥ 2n−2.
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Proof. We shall seperately demonstrate the truth of this statement for n = 1, since C1 = 1 ≥ 2−1;
henceforth we proceed by induction with the base case n = 2. We prove the base case arithmetically:
C2 = 1 = 20, so this inequality holds when n = 2. We now proceed to the inductive step.

We fix a k, and may then accept the hypothesis that Ci ≥ 2i−2 for all i ≤ k. We now want to
palce a lower bound on the value of Ck+1, which we can do since Ck+1 is calculated based on the
values of various smaller Ci.

Ck+1 = C1Ck + C2Ck+1 + · · ·+ CkC1

≥ C1Ck + CkC1

≥ 1 · Ck + Ck · 1
≥ 2Ck ≥ 2(2k−2) = 2(k+1)−2

In actuality even better upper bounds on the Catalan numbers are possible.
Playing with these further, we might discover another neat property of Catalan numbers:

Conjecture 1. For a positive integer n, Cn is odd if and only if n is a power of 2.

Proving this is actually quite easy, with the use of a helpful lemma.

Lemma 1. For every positive integer n, C2n has the same parity as Cn.

and then we can prove our conjecture easily by use of this fact.

Proposition 3. For every positive integer n, Cn is even if and only if n is a power of 2.

Proof. For clarity, let us restate exactly what we want to prove for each positive integer n: we wish
to show that if n is a power of 2, then Cn is odd, and otherwise, Cn is even. We shall prove this by
induction on n. The cases n = 1 and n = 2 are obviously true since C1 and C2 are both odd (and 1
and 2 are powers of 2).

Fixing k ≥ 2, we may assume the inductive hypothesis that the parities of each Ci for 1 ≤ i ≤ k
follows the observed pattern. Now, we must divide into cases:

Case I: k + 1 is a power of 2. Since k + 1 > 2 and k + 1 = 2r for some positive integer r, it
is easy to see that r > 1 and thus k + 1 = 2 (2r−1). By our lemma, Ck+1 and C2r−1 have the same
parity, and by our inductive hypothesis, since 2r−1 is a power of 2, C2r−1 is odd.

Case I: k+1 is an even number which is not a power of 2. Since k+1 is even and positive,
k + 1 = 2` for some positive integer `. By our lemma, Ck+1 and C` have the same parity. Since k + 1
is not a power of 2, ` is not a power of 2, since if it were the case that ` were a power of 2, so would
k + 1 be. Thus, by our inductive hypothesis, C` is even, so Ck+1 is even.

Case III: k + 1 is an odd number greater than 2 (and thus not a power of 2). Then
k + 1 = 2` + 1 for some integer `, and the recurrence for Ck+1 is:

Ck+1 = C1Ck + C2Ck−1 + · · ·+ C`C`+1 + C`+1C` + · · ·+ Ck−1C2 + CkC1

which can be rearranged into Ck+1 = 2 (C1Ck + C2Ck−1 + · · ·+ C`C`+1), so Ck+1 is even.

1 Induction and finite sets

One can prove things by induction on finite sets. For instance, take the problem on the first pset.
Give that old saw about how all horses are the same color, unless there’s a volunteer.
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