
MATH 311-02 Problem Set #5

1. (9 points) The following questions will explore this slightly obscure relation property.

Definition 1. A relation R on a set S is antireflexive if and only if, for all a ∈ S, (a, a) /∈ R;
in other words, a 6R a for all a ∈ S.

(a) (2 points) Demonstrate, either by example or explanation, that there exist relations which
are neither reflexive nor antireflexive.

If there is any element a of S such that a 6R a, then R is nonreflexive; likewise, if there is
any b ∈ S such that b R b, then R is not antireflexive. There are several such relations on
sets of 2 or more elements; the simplest one is R = {(b, b)} on the set S = {a, b}.

(b) (7 points) Prove that for a set S, if R ⊆ S × S is an antireflexive, symmetric, and
transitive relation, then R = ∅.

Proof. We shall proceed by contradiction; suppose R is antireflexive, symmetric, and
transitive, but R 6= ∅. Since R is not empty, there is some (a, b) ∈ R, i.e. there are some
a, b ∈ S so that a R b. By symmetry, it is also true that b R a. Then transitivity on the
two true statements a R b and b R a yields that a R a, but by antireflexivity, R must also
satisfy the contradictory condition a 6R a.

2. (25 points) The following proofs concern unions and intersections of relations; if R1 and R2

are considered as subsets of S ×S, we may take R1 ∪R2 and R1 ∩R2 to represent the ordinary
operations on these sets.

(a) (5 points) Prove or disprove that, for relations R1 and R2 on S, if either R1 or R2 is
reflexive, then the relation R1 ∪R2 is reflexive.

Proposition 1. For relations R1 and R2 on the set S, if either R1 or R2 is reflexive, then
R1 ∪R2 is reflexive.

Proof. Without loss of generality, we may consider the specific premise that R1 is reflexive,
so that for every element a of S, (a, a) ∈ R1. Since R1 ⊆ (R1 ∪ R2), it thus follows that
for every element a of S, (a, a) ∈ (R1 ∪R2), so R1 ∪R2 is reflexive.

As a point of interest, the converse is not true: R1 ∪R2 could be reflexive even if each of
R1 and R2 are not themselves reflexive. For instance, if S = {a, b}, R1 = {(a, a)}, and
R2 = {(b, b)}, then neither R1 nor R2 is reflexive, but R1 ∪R2 is.

(b) (5 points) Prove or disprove that, for relations R51 and R2 on S, if both R1 and R2 are
symmetric, then the relation R1 ∪R2 is symmetric.

Proposition 2. For relations R1 and R2 on the set S, if both R1 and R2 are symmetric,
then R1 ∪R2 is symmetric.

Proof. Symmetry of R1 ∪ R2 is equivalent to the implication that if (a, b) ∈ (R1 ∪ R2),
then (b, a) ∈ (R1 ∪ R2). We may show that an assertion is true by assuming its premise
and working to its conclusion; thus we may take as an overall premise for our proof the
facts that R1 is symmetric, R2 is symmetric, and that some (a, b) ∈ (R1 ∪ R2); from this
we hope to prove that (b, a) ∈ (R1 ∪R2).

Since (a, b) ∈ (R1 ∪ R2), either (a, b) ∈ R1 or (a, b) ∈ R2. Without loss of generality we
may consider the case (a, b) ∈ R1. Since R1 is symmetric, it thus follows that (b, a) ∈ R1,
and since R1 ⊆ (R1 ∪R2), it follows that (b, a) ∈ (R1 ∪R2).

Page 1 of 4 due March 25



MATH 311-02 Problem Set #5

(c) (5 points) Prove or disprove that, for relations R1 and R2 on S, if both R1 and R2 are
transitive, then the relation R1 ∪R2 is transitive.

We disprove the above statement by counterexample. Consider, for example, the following
relations on the real numbers: R1 = {(a, b) ∈ R×R : a < b} and R2 = {(a, b) ∈ R×R : a >
b}. Demonstrably R1 and R2 are each transitive, since both the “less than” and “greater
than” relations are in fact transitive, but R1∪R2 = {(a, b) ∈ R×R : a 6= b} is not transitive
(as a specific example, (1, 3) ∈ R1 ∪R2 and (3, 1) ∈ R1 ∪R2, but (1, 1) /∈ R1 ∪R2).

(d) (5 points) Prove that for equivalence relations R1 and R2 on S, R1∩R2 is an equivalence
relation (note: this is the intersection, whereas the previous questions discussed the union).

We shall prove reflexivity, symmetry, and transitivity, mostly by modifying our above
proofs (hurrah for copy and paste!):

Proposition 3. For relations R1 and R2 on the set S, if both R1 and R2 are equivalence
relations, then R1 ∪R2 is an equivalence relation.

Proof of reflexivity. Since both R1 and R2 are reflexive, it follows that for every element
a of S, (a, a) ∈ R1 and (a, a) ∈ R2. Thus, for every element a of S, (a, a) ∈ R1 ∩ R2, so
R1 ∩R2 is reflexive.

Proof of symmetry. Symmetry of R1 ∩ R2 is equivalent to the implication that if (a, b) ∈
(R1 ∩ R2), then (b, a) ∈ (R1 ∩ R2). We may show that an assertion is true by assuming
its premise and working to its conclusion; thus we may take as an overall premise for our
proof the facts that R1 is symmetric, R2 is symmetric, and that some (a, b) ∈ (R1 ∩ R2);
from this we hope to prove that (b, a) ∈ (R1 ∩R2).

Since (a, b) ∈ (R1 ∩ R2), both (a, b) ∈ R1 and (a, b) ∈ R2. Since both R1 and R2 are
symmetric, it thus follows respectively that (b, a) ∈ R1 and (b, a) ∈ R2. Thus (b, a) ∈
(R1 ∪R2).

Proof of transitivity. Transitivity of R1∩R2 is equivalent to the implication that if (a, b) ∈
(R1 ∩R2) and (b, c) ∈ (R1 ∩R2), then (a, c) ∈ (R1 ∩R2). We may show that an assertion
is true by assuming its premise and working to its conclusion; thus we may take as an
overall premise for our proof the facts that R1 is transitive, R2 is transitive, that some
(a, b) ∈ (R1∩R2) and (b, c) ∈ (R1∩R2); from this we hope to prove that (a, c) ∈ (R1∩R2).

Since (a, b) ∈ (R1 ∩R2), both (a, b) ∈ R1 and (a, b) ∈ R2; likewise from (b, c) ∈ (R1 ∩R2),
both (b, c) ∈ R1 and (b, c) ∈ R2. Since both R1 and R2 are transitive, it follows from the
fact that (a, b) ∈ R1 and (b, c) ∈ R1 that (a, c) ∈ R1 and from the fact that (a, b) ∈ R2

and (b, c) ∈ R2 that (a, c) ∈ R2. Thus (a, c) ∈ (R1 ∪R2).

(e) (5 points) If x ∈ S and R1 and R2 are equivalence relations of S, what is the relationship
between the equivalence classes of x with respect to R1, R2, and R1 ∩R2?

Let us denote the above equivalence classes [x]R1 = {s ∈ S : (x, s) ∈ R1}, [x]R2 = {s ∈ S :
(x, s) ∈ R2}, and [x]R1∩R2 = {s ∈ S : (x, s) ∈ R1∩R2}. Since the condition (x, s) ∈ R1∩R2

is satisfied if and only if (x, s) is an element of both R1 and R2 — i.e., when s ∈ [x]R1 and
s ∈ [x]R2 — it is fairly easy to see that [x]R1∩R2 = [x]R1 ∩ [x]R2 .

3. (6 points) Prove or disprove and salvage if possible: for [a], [b] ∈ Zn for a positive integer n,
if [a] · [b] = 0, then either [a] = [0] or [b] = [0].
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This is a clearly false statement in general: considering Z6, we might note that [2] · [3] = [6] =
[0], but that neither the congruence class [2] nor the congruence class [3] is identical to the
congruence class [0]. However, this weaker version can be proven:

Proposition 4. For [a], [b] ∈ Zn for a prime positive integer n, if [a] · [b] = [0], then either
[a] = [0] or [b] = [0].

Proof. Definitionally, [a] · [b] = [ab], so given that [ab] = [0], it follows that ab ≡ 0 (mod n), or
alternatively that n | (ab− 0). From a result in question 1(b) of problem set #3, we can derive
from prime n that if n | ab then either n | a or n | b. If n | a, then a ≡ 0 (mod n), so [a] = [0];
likewise for b.

4. (4 point bonus) Prove that for a positive integer n, the perfect squares lie in at most
⌈
n+1
2

⌉
different congruence classes modulo n.

It is easiest to argue this in terms of two separate cases: when n is even, there are no more than
n
2

+ 1 congruence classes containing perfect squares, and when n is odd, there are no more than
n+1
2

congruence classes containing perfect squares. First, however, let us note that for any k,
when considerign the elements of Zn, it is the case that [k2] = [k · k] = [k] · [k], and since there
are only n different values for [k], it is easy to calculate the specific classes which can contain
squares by exhaustively considering each [k] · [k]. For instance, modulo 10, we might look at
the following 10 products of congruence classes:

[0] · [0] = [0]

[1] · [1] = [1]

[2] · [2] = [4]

[3] · [3] = [9]

[4] · [4] = [16] = [6]

[5] · [5] = [25] = [5]

[6] · [6] = [36] = [6]

[7] · [7] = [49] = [9]

[8] · [8] = [64] = [4]

[9] · [9] = [81] = [1]

so, for instance, every square is congruent to 0, 1, 4, 5, 6, or 9 modulo 10.

The above example illuminates our overall proof strategy. Note that each [k2] and [(n− k)2] lie
in the same congruence class, which is easy to show: [(n− k)2] = [n2 − 2nk + k2] = [k2], since
n2 − 2nk is a multiple of n, so as a general rule we can guarantee that two distinct congruence
classes have the same square.

Proposition 5. For a positive integer n, the perfect squares lie in at most
⌈
n+1
2

⌉
different

congruence classes modulo n.

Proof. In the course of this proof, we shall use [k] to represent the congruence class of k modulo
n, and conventionally will consider specifically the labels Zn = {[0], [1], [2], . . . , [n − 1]}. For
any integer k, as demonstrated prior to this proof, if k ∈ [`], then k2 ∈ [`2], so the congruence
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classes containing perfect squares are specifically [02], [12], . . . , [(n− 1)2]. It was seen prior to
this proof that [k2] = [(n− k)2], so we may be certain that some of the above-listed congruence
classes are in fact identical. How many of them we can apply this rule to depends on the parity
of n:

Case I: n is even. Let n = 2s, where s is a positive integer. Then [12] = [(2s − 1)2],
[22] = [(2s− 2)2], and so forth up to [(s− 1)2] = [(s + 1)2]. We may thus guarantee that there
are at least s−1 identical pairs among the list [02], [12], . . . , [(n−1)2]. Thus there are no more
than n− (s− 1) = s + 1 = n

2
+ 1 distinct congruence classes in this list.

Case II: n is odd. Let n = 2s + 1, where s is a non-negative integer. Then [12] = [(2s)2],
[22] = [(2s − 1)2], and so forth up to [s2] = [(s + 1)2]. We may thus guarantee that there are
at least s identical pairs among the list [02], [12], . . . , [(n− 1)2]. Thus there are no more than
n− s = s + 1 = n+1

2
distinct congruence classes in this list.

In fact, when n is prime, there are exactly
⌈
n+1
2

⌉
congruence classes containing squares; these are

called quadratic residues. There are simple rules (with rather advanced proofs) for determining
which numbers are quadratic residues; the entire theory is detailed elsewhere under the name
of quadratic reciprocity.

Ha rossz kedvem van, matematizálok, hogy jó kedvem legyen. Ha jó kedvem van,
matematizálok, hogy megmaradjon a jó kedvem. [When I’m in a bad mood, I do
mathematics, so that my mood becomes good. When I’m in a good mood, I do
mathematics, so that my mood stays good.] —Alfréd Rényi
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