1. (9 points) The following questions will explore this slightly obscure relation property.

Definition 1. A relation R on a set S is *antireflexive* if and only if, for all $a \in S$, $(a, a) \notin R$; in other words, $a \not R a$ for all $a \in S$.

(a) (2 points) Demonstrate, either by example or explanation, that there exist relations which are neither reflexive nor antireflexive.

If there is any element a of S such that $a \not R a$, then R is nonreflexive; likewise, if there is any $b \in S$ such that b R b, then R is not antireflexive. There are several such relations on sets of 2 or more elements; the simplest one is $R = \{(b, b)\}$ on the set $S = \{a, b\}$.

(b) (7 points) Prove that for a set S, if $R \subseteq S \times S$ is an antireflexive, symmetric, and transitive relation, then $R = \emptyset$.

Proof. We shall proceed by contradiction; suppose R is antireflexive, symmetric, and transitive, but $R \neq \emptyset$. Since R is not empty, there is some $(a, b) \in R$, i.e. there are some $a, b \in S$ so that $a \ R \ b$. By symmetry, it is also true that $b \ R \ a$. Then transitivity on the two true statements $a \ R \ b$ and $b \ R \ a$ yields that $a \ R \ a$, but by antireflexivity, R must also satisfy the contradictory condition $a \ R \ a$.

- 2. (25 points) The following proofs concern unions and intersections of relations; if R_1 and R_2 are considered as subsets of $S \times S$, we may take $R_1 \cup R_2$ and $R_1 \cap R_2$ to represent the ordinary operations on these sets.
 - (a) (5 points) Prove or disprove that, for relations R_1 and R_2 on S, if either R_1 or R_2 is reflexive, then the relation $R_1 \cup R_2$ is reflexive.

Proposition 1. For relations R_1 and R_2 on the set S, if either R_1 or R_2 is reflexive, then $R_1 \cup R_2$ is reflexive.

Proof. Without loss of generality, we may consider the specific premise that R_1 is reflexive, so that for every element a of S, $(a, a) \in R_1$. Since $R_1 \subseteq (R_1 \cup R_2)$, it thus follows that for every element a of S, $(a, a) \in (R_1 \cup R_2)$, so $R_1 \cup R_2$ is reflexive. \Box

As a point of interest, the converse is *not* true: $R_1 \cup R_2$ could be reflexive even if each of R_1 and R_2 are not themselves reflexive. For instance, if $S = \{a, b\}$, $R_1 = \{(a, a)\}$, and $R_2 = \{(b, b)\}$, then neither R_1 nor R_2 is reflexive, but $R_1 \cup R_2$ is.

(b) (5 points) Prove or disprove that, for relations $R5_1$ and R_2 on S, if both R_1 and R_2 are symmetric, then the relation $R_1 \cup R_2$ is symmetric.

Proposition 2. For relations R_1 and R_2 on the set S, if both R_1 and R_2 are symmetric, then $R_1 \cup R_2$ is symmetric.

Proof. Symmetry of $R_1 \cup R_2$ is equivalent to the implication that if $(a, b) \in (R_1 \cup R_2)$, then $(b, a) \in (R_1 \cup R_2)$. We may show that an assertion is true by assuming its premise and working to its conclusion; thus we may take as an overall premise for our proof the facts that R_1 is symmetric, R_2 is symmetric, and that some $(a, b) \in (R_1 \cup R_2)$; from this we hope to prove that $(b, a) \in (R_1 \cup R_2)$.

Since $(a, b) \in (R_1 \cup R_2)$, either $(a, b) \in R_1$ or $(a, b) \in R_2$. Without loss of generality we may consider the case $(a, b) \in R_1$. Since R_1 is symmetric, it thus follows that $(b, a) \in R_1$, and since $R_1 \subseteq (R_1 \cup R_2)$, it follows that $(b, a) \in (R_1 \cup R_2)$.

(c) (5 points) Prove or disprove that, for relations R_1 and R_2 on S, if both R_1 and R_2 are transitive, then the relation $R_1 \cup R_2$ is transitive.

We disprove the above statement by counterexample. Consider, for example, the following relations on the real numbers: $R_1 = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a < b\}$ and $R_2 = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a > b\}$. Demonstrably R_1 and R_2 are each transitive, since both the "less than" and "greater than" relations are in fact transitive, but $R_1 \cup R_2 = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a \neq b\}$ is not transitive (as a specific example, $(1, 3) \in R_1 \cup R_2$ and $(3, 1) \in R_1 \cup R_2$, but $(1, 1) \notin R_1 \cup R_2$).

(d) (5 points) Prove that for equivalence relations R_1 and R_2 on S, $R_1 \cap R_2$ is an equivalence relation (note: this is the intersection, whereas the previous questions discussed the union). We shall prove reflexivity, symmetry, and transitivity, mostly by modifying our above proofs (hurrah for copy and paste!):

Proposition 3. For relations R_1 and R_2 on the set S, if both R_1 and R_2 are equivalence relations, then $R_1 \cup R_2$ is an equivalence relation.

Proof of reflexivity. Since both R_1 and R_2 are reflexive, it follows that for every element a of S, $(a, a) \in R_1$ and $(a, a) \in R_2$. Thus, for every element a of S, $(a, a) \in R_1 \cap R_2$, so $R_1 \cap R_2$ is reflexive.

Proof of symmetry. Symmetry of $R_1 \cap R_2$ is equivalent to the implication that if $(a, b) \in (R_1 \cap R_2)$, then $(b, a) \in (R_1 \cap R_2)$. We may show that an assertion is true by assuming its premise and working to its conclusion; thus we may take as an overall premise for our proof the facts that R_1 is symmetric, R_2 is symmetric, and that some $(a, b) \in (R_1 \cap R_2)$; from this we hope to prove that $(b, a) \in (R_1 \cap R_2)$.

Since $(a,b) \in (R_1 \cap R_2)$, both $(a,b) \in R_1$ and $(a,b) \in R_2$. Since both R_1 and R_2 are symmetric, it thus follows respectively that $(b,a) \in R_1$ and $(b,a) \in R_2$. Thus $(b,a) \in (R_1 \cup R_2)$.

Proof of transitivity. Transitivity of $R_1 \cap R_2$ is equivalent to the implication that if $(a, b) \in (R_1 \cap R_2)$ and $(b, c) \in (R_1 \cap R_2)$, then $(a, c) \in (R_1 \cap R_2)$. We may show that an assertion is true by assuming its premise and working to its conclusion; thus we may take as an overall premise for our proof the facts that R_1 is transitive, R_2 is transitive, that some $(a, b) \in (R_1 \cap R_2)$ and $(b, c) \in (R_1 \cap R_2)$; from this we hope to prove that $(a, c) \in (R_1 \cap R_2)$. Since $(a, b) \in (R_1 \cap R_2)$, both $(a, b) \in R_1$ and $(a, b) \in R_2$; likewise from $(b, c) \in (R_1 \cap R_2)$, both $(b, c) \in R_1$ and $(b, c) \in R_2$. Since both R_1 and R_2 are transitive, it follows from the fact that $(a, b) \in R_1$ and $(b, c) \in R_1$ that $(a, c) \in R_1$ and from the fact that $(a, b) \in R_2$ and $(b, c) \in R_2$. Thus $(a, c) \in (R_1 \cup R_2)$.

- (e) (5 points) If x ∈ S and R₁ and R₂ are equivalence relations of S, what is the relationship between the equivalence classes of x with respect to R₁, R₂, and R₁ ∩ R₂?
 Let us denote the above equivalence classes [x]_{R₁} = {s ∈ S : (x, s) ∈ R₁}, [x]_{R₂} = {s ∈ S : (x, s) ∈ R₂}, and [x]_{R₁∩R₂} = {s ∈ S : (x, s) ∈ R₁∩R₂}. Since the condition (x, s) ∈ R₁∩R₂ is satisfied if and only if (x, s) is an element of both R₁ and R₂ i.e., when s ∈ [x]_{R₁} and s ∈ [x]_{R₂} it is fairly easy to see that [x]_{R₁∩R₂} = [x]_{R₁} ∩ [x]_{R₂}.
- 3. (6 points) Prove or disprove and salvage if possible: for $[a], [b] \in \mathbb{Z}_n$ for a positive integer n, if $[a] \cdot [b] = 0$, then either [a] = [0] or [b] = [0].

This is a clearly false statement in general: considering \mathbb{Z}_6 , we might note that $[2] \cdot [3] = [6] = [0]$, but that neither the congruence class [2] nor the congruence class [3] is identical to the congruence class [0]. However, this weaker version can be proven:

Proposition 4. For $[a], [b] \in \mathbb{Z}_n$ for a prime positive integer n, if $[a] \cdot [b] = [0]$, then either [a] = [0] or [b] = [0].

Proof. Definitionally, $[a] \cdot [b] = [ab]$, so given that [ab] = [0], it follows that $ab \equiv 0 \pmod{n}$, or alternatively that $n \mid (ab - 0)$. From a result in question 1(b) of problem set #3, we can derive from prime n that if $n \mid ab$ then either $n \mid a$ or $n \mid b$. If $n \mid a$, then $a \equiv 0 \pmod{n}$, so [a] = [0]; likewise for b.

4. (4 point bonus) Prove that for a positive integer n, the perfect squares lie in at most $\lceil \frac{n+1}{2} \rceil$ different congruence classes modulo n.

It is easiest to argue this in terms of two separate cases: when n is even, there are no more than $\frac{n}{2} + 1$ congruence classes containing perfect squares, and when n is odd, there are no more than $\frac{n+1}{2}$ congruence classes containing perfect squares. First, however, let us note that for any k, when considering the elements of \mathbb{Z}_n , it is the case that $[k^2] = [k \cdot k] = [k] \cdot [k]$, and since there are only n different values for [k], it is easy to calculate the specific classes which can contain squares by exhaustively considering each $[k] \cdot [k]$. For instance, modulo 10, we might look at the following 10 products of congruence classes:

$$[0] \cdot [0] = [0]$$

$$[1] \cdot [1] = [1]$$

$$[2] \cdot [2] = [4]$$

$$[3] \cdot [3] = [9]$$

$$[4] \cdot [4] = [16] = [6]$$

$$[5] \cdot [5] = [25] = [5]$$

$$[6] \cdot [6] = [36] = [6]$$

$$[7] \cdot [7] = [49] = [9]$$

$$[8] \cdot [8] = [64] = [4]$$

$$[9] \cdot [9] = [81] = [1]$$

so, for instance, every square is congruent to 0, 1, 4, 5, 6, or 9 modulo 10.

The above example illuminates our overall proof strategy. Note that each $[k^2]$ and $[(n-k)^2]$ lie in the same congruence class, which is easy to show: $[(n-k)^2] = [n^2 - 2nk + k^2] = [k^2]$, since $n^2 - 2nk$ is a multiple of n, so as a general rule we can guarantee that two distinct congruence classes have the same square.

Proposition 5. For a positive integer n, the perfect squares lie in at most $\left\lceil \frac{n+1}{2} \right\rceil$ different congruence classes modulo n.

Proof. In the course of this proof, we shall use [k] to represent the congruence class of k modulo n, and conventionally will consider specifically the labels $\mathbb{Z}_n = \{[0], [1], [2], \ldots, [n-1]\}$. For any integer k, as demonstrated prior to this proof, if $k \in [\ell]$, then $k^2 \in [\ell^2]$, so the congruence

classes containing perfect squares are specifically $[0^2]$, $[1^2]$, ..., $[(n-1)^2]$. It was seen prior to this proof that $[k^2] = [(n-k)^2]$, so we may be certain that some of the above-listed congruence classes are in fact identical. How many of them we can apply this rule to depends on the parity of n:

Case I: *n* is even. Let n = 2s, where *s* is a positive integer. Then $[1^2] = [(2s - 1)^2]$, $[2^2] = [(2s - 2)^2]$, and so forth up to $[(s - 1)^2] = [(s + 1)^2]$. We may thus guarantee that there are at least s - 1 identical pairs among the list $[0^2]$, $[1^2]$, ..., $[(n - 1)^2]$. Thus there are no more than $n - (s - 1) = s + 1 = \frac{n}{2} + 1$ distinct congruence classes in this list.

Case II: *n* is odd. Let n = 2s + 1, where *s* is a non-negative integer. Then $[1^2] = [(2s)^2]$, $[2^2] = [(2s - 1)^2]$, and so forth up to $[s^2] = [(s + 1)^2]$. We may thus guarantee that there are at least *s* identical pairs among the list $[0^2]$, $[1^2]$, ..., $[(n - 1)^2]$. Thus there are no more than $n - s = s + 1 = \frac{n+1}{2}$ distinct congruence classes in this list. \Box

In fact, when n is prime, there are exactly $\lceil \frac{n+1}{2} \rceil$ congruence classes containing squares; these are called *quadratic residues*. There are simple rules (with rather advanced proofs) for determining which numbers are quadratic residues; the entire theory is detailed elsewhere under the name of *quadratic reciprocity*.

Ha rossz kedvem van, matematizálok, hogy jó kedvem legyen. Ha jó kedvem van, matematizálok, hogy megmaradjon a jó kedvem. [When I'm in a bad mood, I do mathematics, so that my mood becomes good. When I'm in a good mood, I do mathematics, so that my mood stays good.] —Alfréd Rényi