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Desired matrix forms

We saw previously that every 2× 3 augmented matrix is

row-equivalent to one of the three matrices:[
1 0 m
0 1 n

] [
1 m n
0 0 0

] [
1 m n
0 0 k

]
Larger matrices are row-equivalent to similar structures. Such matrices

are said to be in reduced row-echelon form.
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De�nition of reduced form

[
1 0 m
0 1 n

] [
1 m n
0 0 0

] [
1 m n
0 0 1

]

De�nition of reduced form

A matrix is in reduced row-echelon form (or reduced form) if:

I the all-zero rows are at the bottom of the matrix,

I the leftmost nonzero element in each row (called a pivot) is 1,

I the pivot of each row is to the right of the pivots in higher rows,

and

I every other element of a column containing a pivot is zero,
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Examples of reduced form

As a practice, we can ask if each of the following matrices is

row-reduced:

I

0 1 −3 0 2

0 0 0 1 −4
0 0 0 0 0

 is row-reduced; note the pivots.

I

1 4 0 3

0 0 1 0

0 0 0 1

 is not row-reduced; nonzero entry in pivot column.

I


0 6 −5
1 0 2

0 0 0

0 0 0

 is not row-reduced, because a pivot is 6, and it is

above and to the right of another pivot.
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Row-equivalency to reduced forms

Each of the problems on the previous slides can be ��xed� via row

operations:

I

1 4 0 3

0 0 1 0

0 0 0 1

 R1−3R3→R1∼

1 4 0 0

0 0 1 0

0 0 0 1



I


0 6 −5
1 0 2

0 0 0

0 0 0

 R1↔R2∼


1 0 2

0 6 −5
0 0 0

0 0 0

 R2÷6→R2∼


1 0 2

0 1 −5
6

0 0 0

0 0 0


The procedure by which we convert any matrix to a reduced

equivalent is called Gauss-Jordan elimination.
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Underlying techniques of Gauss-Jordan Elimination

Each requirement of reduced form can be addressed with a row

operation.

I To get rows of zero at the bottom, we can swap rows.

I To get each pivot to be 1, we can scale its row.

I To get pivots arranged from upper left to lower right, we can

swap rows.

I To get entries in the same column as a pivot to zero, we can

add/subtract the pivot row to them.

If we work from left to right, selecting as a pivot the top nonzero entry

of each column which doesn't already have a pivot, this is actually a

methodical operation!
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Example of the underlying approach

Let's row-reduce a sample matrix.

Column 1 has a nonzero entry, marked as a pivot.

Column 2 has a nonzero entry in the second row; it's a pivot.0 5 0 −8
3 −6 0 12

0 −15 0 24

 ∼
3 −6 0 12

0 5 0 −8
0 −15 0 24

 (
R2 ↔ R1

)

∼

1 −2 0 4

0 5 0 −8
0 −15 0 24

 (
R1 ÷ 3→ R1

)

∼

1 −2 0 4

0 1 0 −8

5

0 −15 0 24

 (
R2 ÷ 5→ R2

)

∼

1 0 0 4

5

0 1 0 −8

5

0 0 0 0

 (
R1 + 2R2 → R1

R3 + 15R2 → R3

)
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The Gauss-Jordan Process

Here's the process explicitly laid out:

1. Take the leftmost column which has neither a selected pivot nor

all zero elements to be your active column. If there is no such

column, we're done!

2. Let the uppermost row which has no pivot but does have a

nonzero entry in this column be your active row, and let the

element where they intersect be this row's pivot. If there is no

such row, we're done!

3. If there are rows without pivots above the active row, swap it

with them.

4. Scale the active row by dividing by the value of the pivot.

5. Subtract the active row times the entries above and below its

pivot from the rows above and below it.

6. Go back to step 1.
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Working through the process

1 2 3 4 5

Select column Select row Swap Scale Subtract0 −2 8 1

2 −2 6 −4
0 −1 4 1

2

 ∼
2 −2 6 −4
0 −2 8 1

0 −1 4 1

2

 (
R2 ↔ R1

)

∼

1 −1 3 −2
0 −2 8 1

0 −1 4 1

2

 (
R1 ÷ 2→ R1

)

∼

1 −1 3 −2
0 1 −4 −1

2

0 −1 4 1

2

 (
R2 ÷ (−2)→ R2

)

∼

1 0 −1 −5

2

0 1 −4 −1

2

0 0 0 0

 (
R1 + R2 → R1

R3 + R2 → R3

)
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Returning to equations

So the Gauss-Jordan elimination method eventually gets you a solution

to a system of equations:


−2y + 8z = 1

2x − 2y + 6z = −4
− y + 4z = 1

2

⇒

0 −2 8 1

2 −2 6 −4
0 −1 4 1

2

 ∼
1 0 −1 −5

2

0 1 −4 −1

2

0 0 0 0

 ⇒


x − z = −5

2

y − 4z = −1

2

0 = 0

so x = z − 5

2
, and y = 4z − 1

2
, but z could be anything; there are

in�nitely many solutions.
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