
MATH 387-01 Final Exam solutions

1. (21 points) Answer the following questions about recurrence relations.

(a) (9 points) Find the solution to the recurrence relation an = 8an−1 − 16an−2 with initial
conditions a0 = 7 and a1 = 12.

This equation is a linear homogeneous recurrence of order 2; it can be solved using any of
the standard techniques but the most straightforward is making use of the characteristic
polynomial, which is λ2 = 8λ− 16, which can be rearranged to (λ− 4)2 = 0, so λ can only
equal 4, with multiplicity 2 and thus the general formula for an is A4n + Bn4n. Then we
will use the initial conditions to determine these coefficients:{

7 = a0 = A+ 0B

12 = a1 = 4A+ 4B

The first equation gives us A = 7 easily; plugging it into the second, we get 4B = 12−28 =
−16, so B = −4. Thus, an = 7 · 4n − 4n · 4n.

(b) (12 points) Find the solution to the recurrence relation rn = 3rn−1 − 2rn−2 + 5n with
initial conditions r0 = 5 and r1 = 6.

We note that the associated homogeneous equation is bn = 3bn−1 − 2bn−2, which has
associated characteristic polynomial λ2 − 3λ+ 2 which has roots 1 and 2, so the solution
to this homogeneous recurrence is A+B2n.For a particular solution to the inhomogeneous
equation, we note that the inhomogeneous part is 5n. Näıvely we might adopt the template
C+Dn, but this overlaps the homogeneous term A and must be bumped up to Cn+Dn2.
Plugging this particular solution into the recurrence gives

Cn+Dn2 = 3[C(n− 1) +D(n− 1)2]− 2[C(n− 2) +D(n− 2)2] + 5n

Cn+Dn2 = 3[(D − C) + (C − 2D)n+Dn2]− 2[(4D − 2C) + (C − 4D)n+Dn2] + 5n

Cn+Dn2 = (C − 5D) + (C + 2D + 5)n+Dn2

(5D − C)− 2Dn = 5n

So clearly D = −5
2
and then C = 5D = −25

2
, giving a particular inhomogeneous solution

of −25
2
n− 5

2
n2, and thus a general solution of rn = A+ B2n − 25

2
n− 5

2
n2. We shall solve

for A and B using the initial conditions:{
5 = r0 = A+ B

6 = r1 = A+ 2B − 15

Subtracting the first equation from the second gives B = 16, and then plugging back into
the first yields A = −11, for a solution of rn = 16 · 2n − 11− 25

2
n− 5

2
n2.

2. (8 points) Let an represent the number of ways of writing n as a sum of positive integers in
which each positive integer appears exactly 0, 2, or 3 times. For instance, a8 = 3 because 8 can
be written according to those rules as 4 + 4, 3 + 3+ 1+ 1, or 2 + 2+ 2+ 1+ 1. Find a formula
for the generating function

∑∞
n=0 anx

n.

The selection function for inclusion of 1s is 1 + x2 + x3; the selection function for inclusion of
2s is 1+x4+x6, and so forth, so the generating function for the partition process as a whole is

∞∏
i=0

(1 + x2i + x3i).
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3. (15 points) I have four red, two green, and one white ping-pong ball I wish to put into a long,
narrow tube.

(a) (4 points) How many different ways could the balls be ordered within the tube?

There are seven locations for the white ball; the two green balls can them be placed in
two of the remaining six locations in

(
6
2

)
ways; then the red balls are forced into a specific

position so there are 7
(
6
2

)
= 105 possible placements; note this quantity could also be

identified as the multinomial coefficient
(

7
4,2,1

)
.

(b) (6 points) How many different ways are there to order the balls within the tube if I insist
that neither all the red balls be clumped together, nor that both of the green balls be together?

We must excludse those placements where the green balls are together; considering the
green balls as a single unit, there are

(
6

4,1,1

)
= 30 such configurations. We must also exclude

those where the red balls form a single unit, of which there are
(

4
1,2,1

)
= 12. Finally, we

must re-include the over-removed overlap of these two families, where both the red and
green balls form a unit; this occurs in

(
3

1,1,1

)
= 6 ways, so the total number of configurations

is (
7

4, 2, 1

)
−

(
6

4, 1, 1

)
−

(
4

1, 2, 1

)
+

(
3

1, 1, 1

)
= 69.

(c) (5 points) How many ways are there to place the balls in the tube if I consider an ordering
within the tube to be identical to its reversal?

As seen in part (a), there are 105 oriented arrangements. Now let us consider, preparatory
to using Burnside’s Lemma on a two-element group, which of those arrangements are
invariant over the reversal (a flip, or a 180◦ rotation, as the case may be): the white
ball would need to occupy the middle position, and the red and green would be arranged
symmetrically about it, with two green and one red on each side; it is easy to see that
there are exactly three invariant arrangements under the flip, so by Burnside’s lemma,
there are 105+3

2
= 54 arrangements up to reversal-equivalency.

4. (16 points) An individual-sized crudité plate is considered to be attractively balanced if it has
between 3 and 5 carrots inclusive, fewer than 7 pieces of celery, at least one piece of broccoli,
any number of red-pepper slivers, and at least 4 snap-pea pods.

(a) (8 points) Let an represent the number of possible attractively balanced plates with n
vegetables. Find a formula for the ordinary generating function

∑∞
n=0 anx

n.

Selection functions for the individual types of vegetables are easily built: carrots are
associated with x3+x4+x5, celery with 1+x+· · ·+x6, broccoli with x+x2+x3+· · · = x

1−x
,

red-pepper with 1+x+x2+ · · · = 1
1−x

, and snap-peas with x4+x5+x6+ · · · = x4

1−x
. Their

product is going to be the moderately messy expression:

(x3 + x4 + x5)(1 + x+ x2 + x3 + x4 + x5 + x6)x5

(1− x)3

Particularly for the purposes of the next question, it is almost certainly worthwhile to
rephrase those two finite geometric series more concisely: x3 + x4 + x5 = x3−x6

1−x
, and

1 + x+ x2 + · · ·+ x6 = 1−x7

1−x
, giving the somewhat more tractable form

(x3 − x6)(1− x7)x5

(1− x)5
=

x8 − x11 − x15 + x18

(1− x)5
.
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(b) (8 points) Determine the number of different attractively balanced plates which can pos-
sibly be made with 18 vegetables.

We might use the generating function to do this, or you could revert to more straightfor-
ward inclusion-exclusion methods. Using the generating function, we note that

x8 − x11 − x15 + x18

(1− x)5
= (x8 − x11 − x15 + x18)

∞∑
n=0

(
n+ 4

4

)
xn

from which we wish to extract the coefficient of x18. There are four terms which contribute:
x8 ·

(
14
4

)
x10, −x11 ·

(
11
4

)
x7, −x15 ·

(
7
4

)
x3, and x18 ·

(
4
4

)
x0.Thus the coefficient of x18 in this

generating function is
(
14
4

)
−

(
11
−

)(
7
4

)
+
(
4
4

)
= 637.

Alternatively, we could use inclusion-exclusion if we dislike generating functions. Let us
pre-emptively set aside 3 carrots, one broccoli, and four snap-peas, leaving 10 as-yet-
undetermined veggies. There are

(
10+4
4

)
ways to assign those vegetables without restric-

tions, but we have restrictions on the number of carrots and celery sticks. We specifically
forbid having three (additional to our pre-emptively selected three) carrots and seven cel-
ery stalks. We can calculate the number of assignments violating our carrot provision by
pre-emptively making three of our ten veggies carrots, leaving 7 unassigned and free to
be assigned in

(
7+4
4

)
ways. Likewise we can calculate the number violating our celery pro-

vision by assigning 7 celery stalks, leaving 3 unassigned which could be assigned in
(
3+4
4

)
ways. Finally, we must consider the possibility that we have both 7 celery stalks and 3
carrots among these 10 vegetables, which is a circumstance violating both conditions and
thus removed twice; we have to add this count back in so as not to over-exclude. Thus,
our total is

(
10+4
4

)
−
(
7+4
4

)
−

(
3+4
4

)
+ 1, as above.

It is also possible to solve this problem with either the carrot or celery or both finite
geometric series unsimplified, or, equivalently, to address the restriction with a casewise
argument rather than an inclusion-exclusion argument, but doing so is extremely messy.

5. (25 points) A SET® deck contains cards with four different attributes: number, color, symbol,
and fill. Each attribute has three possibilities: for instance, cards can be red, green, or purple,
depict one, two, or three shapes, that shape could be a diamond, oval, or squiggle, and the
shape could be hollow, striped, or filled (some example cards are shown in the questions below,
although colors are printed in greyscale).

(a) (3 points) How many different cards are there?

There are four properties, and three possible choices within each property, giving 34 = 81
cars in all.

(b) (6 points) One type of “set” in the game is an unordered collection of three cards which
are the same color and symbol, but with all different numbers and shadings. An example
of such a set is shown below. How many different sets of this type are there?

The set is unordered, but the three different numbers which must be present enforce a
“distinguishability” among the cards. Then we select a common number (in one of 3
ways), a common symbol (in one of 3 ways), and an association of shadings with numbers
(in 3! = 6 ways), so there are a total of 3 · 3 · 6 = 54 such sets.
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(c) (8 points) How many possible ways are there to build an ordered collection of three distinct
cards such that exactly two have the same number, all three have the same shading, and
there are no restrictions on color or shape (an example is below)?

It is easier to actually find an unordered collection, and then multiply by the six possible
orderings. We choose any of three shadings to have in common, any of three numbers
for the doubleton, any of the two remaining numbers for the singleton, and then we must
assign colors and shapes. There are 9 possible color-shape pairs, and we assign one of
them to the singleton, and two of them to the doubleton (which we can do in

(
9
2

)
ways.

Thus, there are

3 · 3 · 2 · 9
(
9

2

)
= 5832

unordered collections, which are associated with 5832 · 6 = 34992 possible ordered collec-
tions.

(d) (8 points) How many unordered sets of five distinct cards have at least one card in each
shape and shading (with no requirements on number or color)?

We shall use inclusion-exclusion to establish the appropriate forbiddences; let U be our
universe of

(
81
5

)
completely free selections of five cards without order, and let A1, A2, and

A3 be those selections which fail to have a squiggle, oval, or diamond, while B1, B2, and
B3 are sets of selections without one of the three shadings. We thus want to find out
how many elements of U lie in none of these sets. Fortunately, all the Ai and Bi have
similar analyses: since a single symbol or shading is excluded in each, there is a pool of
54 cards each could draw from, so |Ai| = |Bi| =

(
54
5

)
. For pairwise intersections, note that

|Ai ∩Aj| = |Bi ∩Bj| =
(
27
5

)
, since constraint to a single symbol or a single shading leaves

only 27 possible cards. On the other hand, |Ai ∩Bj| =
(
36
5

)
, since elements of this set use

two shades, two symbols, three colors, and three numbers, for a total of 36 possibilities.

Finally, we also need to look at Ai ∩ Aj ∩ Bk; here we have a pool of 18 cards so |Ai ∩
Aj ∩ Bk| = |Ai ∩ Bj ∩ Bk| =

(
18
5

)
, and lastly |Ai ∩ Aj ∩ Bk ∩ Bℓ| =

(
9
5

)
. Thus, putting it

all togehter, our desired quantity will be(
81

5

)
− 6

(
54

5

)
+ 6

(
27

5

)
+ 9

(
36

5

)
− 18

(
18

5

)
+ 9

(
9

5

)
= 10369620

6. (16 points) Let G be the graph illustrated to the right. Answer the following questions. You
may label the original graph, if desired.
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(a) (6 points) Prove that χ(G) = 4.

We must show both that four colors suffice and that three colors
are necessary. The latter is pretty easy to show because this graph
contains several 3-cliques (a.k.a. triangles), whose vertices must
all be different colors; we have two triangles joined end-to-end
at the bottom, and it is easy to see that, if we try to use only
three colors, we will inevitably end up having all three adjacent to
the top vertex. To show the latter, we might explicitly present a
coloring using four colors, which is depicted on the graph shown.

(b) (4 points) Demonstrate that this graph is Hamiltonian.

G will be Hamiltonian; an example of a Hamiltonian circuit is
depicted to the left.

(c) (6 points) Is this graph Eulerian? Why or why not?

G will not be Eulerian because several vertices (in fact, almost all
of them!) have odd degree.

7. (14 points) Let an represent the number of ways to fly n red, white, and blue pennants on a
flagpole (where order of the pennants matters) such that there is at least one red pennant, an
odd number of white pennants, and no more than 2 blue pennants.

(a) (8 points) Find a formula for the exponential generating function
∑∞

n=0 an
xn

n!
.

The selection function for red pennants is x+ x2

2
+ x3

6
+ · · · = ex−1. The selection for white

pennants is x + x3

6
+ x5

120
= sinhx = ex−e−x

2
; the selection for blue pennants is the finite

power series 1 + x+ x2

2
. Assembling all these together, we get the exponential generating

function

(ex − 1)
ex − e−x

2

(
1 + x+

x2

2

)
=

2e2x − 2− 2ex − 2e−x + 2xe2x − 2x− 2xex − 2xe−x + x2e2x − x2 − x2ex − x2e−x

4

(b) (6 points) How many ways are there to fly 6 pennants?

Three of the 12 terms in the generating function above are constants which don’t contirubte
to the degree-six term; let us look at what coefficient each of the remaining 9 terms above
contributes towards the x6

6!
term: looking term by term, we get:

1

4

(
2(2x)6

6!
− 2x6

6!
− 2(−x)6

6!
+

2x(2x)5

5!
− 2xx5

5!
− 2x(−x)5

5!
+

x2(2x)4

4!
− x2x4

4!
− x2(−x)4

4!

)
which we can rearrange factoring out the x6

6!
term, introducing new factors in the numerator

and denominator where only 5! or 4! is present:

1

4

(
27 − 2− 2 + 6 · 26 − 6 · 2 + 6 · 2 + 6 · 5 · 24 − 6 · 5− 6 · 5

) x6

6!

yielding a total of 232 possible arrangements.
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8. (10 points) Consider the following algorithm performed on a permutation π of the numbers
1, . . . , n; we use π[i] to denote the ith term of the permutation.

(1) Let x = 0 and i = 1.

(2) If i = n, stop and output x.

(3) Let j = i+ 1.

(4) If j > n, go to step 8.

(5) If π[j] < π[i], increase the value of x by 1.

(6) Increase the value of j by 1.

(7) Return to step 4.

(8) Increase the value of i by 1.

(9) Return to step 2.

(a) (4 points) Walk through the algorithm’s procedure when performed on π = (3, 5, 1, 4, 2).
What does this algorithm seem to do?

We can build a table showing the values, over time, of i, j, and x; for brevity we will only
include those steps where a value changes.

Step i j x
(1) 1 0
(3) 2
(6) 3
(5) 1
(6) 4
(6) 5
(5) 2
(6) 6
(8) 2
(3) 3
(5) 3
(6) 4
(5) 4
(6) 5
(5) 5
(6) 6
(8) 3
(6) 4
(6) 5
(6) 6
(8) 4
(6) 5
(5) 6
(6) 6
(8) 5
(2) OUTPUT: 6
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This procedure counts the number of pairs in the permutation where a larger number
precedes a smaller one (these are called “inversions” in enumerative combinatorics of
permutations). It outputs 6 in this case, for instance, because 3 is before both 2 and 1, 5
is before 1, 4, and 2, and 4 is before 2.

(b) (6 points) Give a big-O estimate of the number of operations, in terms of the length n of
the permutation π, which this algorithm takes to perform its task.

Since there are two nested loops (the value of i ranging from 1 to n and the value of j
ranging from i+ 1 to n+ 1), we’d venture that this is quadratic, a.k.a. O(n2) time. This
is the expected runtime for an algorithm which involves comparing every single pair in a
list on length n, since there are

(
n
2

)
pairs to compare, and

(
n
2

)
= O(n2).

It is worth noting, although it is outside the scope of the question asked, that counting
inversions in a permutation need not be a quadratic-time procedure. There is a divide-
and-conquer algorithm which counts inversions in each half of the permutation and then
counts the numbers of inversions between the two halves; that implementation would take
O(n log n) time.

9. (16 point bonus, 8 each) On the back of this sheet, prove either (or both!) of the following
statements combinatorially:

� For any positive integer n,
⌊n
2
⌋∑

k=0

(
n
2k

)
=

⌊n−1
2

⌋∑
k=0

(
n

2k+1

)
.

The left side of this equation counts the number of ways to select an even number of
elements out of the set {1, 2, . . . , n}, while the right side counts the number of ways to
select an odd number of elements. We can show that these two quantities are equal by
putting their associated sets into a one-to-one correspondence. If A is the collection of
even-cardinality subsets of {1, . . . , n} and B is the collection of odd-cardinality subsets of
{1, . . . , n}, we can build the simple bijection from A to B:

f(S) =

{
S − {1} if 1 ∈ S

S ∪ {1} if 1 /∈ S

i.e., the function f toggles the inclusion of 1 in the set S, including it if absent and
excluding it if present. Clearly this function is a bijection, since it’s in fact its own inverse,
and furthermore it is easy to show it maps A to B, since |f(S)| will necessarily be |S| ± 1,
and so if |S| is even, then |f(S)| is odd.

� For any positive integer n and 0 ≤ k ≤ n
2
,

n−k∑
m=k

(
m
k

)(
n−m
k

)
=

(
n+1
2k+1

)
.

The right side of this equation is clearly counting the 2k+1-element subsets of {1, 2, 3, . . . , n+
1}; what we hope to do is show that the left side counts the same thing.

Since 2k+1 is odd, the subsets in question have a middle element. We can thus build them
in the following manner: select a value for their middle element, then select k elements
below the middle, and k elements above the middle. Clearly the middle element must be
at least k+1, and can be no more than (n+1)−k. Let us denote this element as m+1, so
that m could be anything from k to n− k¡ and then we want to be selecting k values from
1, 2, . . . ,m and k values from m+ 2,m+ 3, . . . , n+ 1. Note that there are

(
m
k

)
and

(
n−m
k

)
ways to complete these two processes respectively, so the number of ways to perform the
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whole process (selection of m, selection of k values less than m, and selection of k values

greater than m) is exactly
n−k∑
m=k

(
m
k

)(
n−m
k

)
.
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