d MATH 205-04 (Calculus I), Spring 2015
MATH 205-04 (Calculus I), Spring 2015

Quick links:


Course information:

Instructor: Jake Wildstrom
Office: Natural Sciences Building 113
Primary office hours: Monday 11:00–12:30, Wednesday 14:00–15:30
Secondary office hours: Tuesday 11:00–13:00, Thursday 14:30–15:30, or by appointment
Phone number: (502)852-5845 (x5845)
E-mail: djwild01@louisville.edu
Lecture: MWF 12:30–13:45 in Natural Sciences Building 110
Prerequisites: MATH 111-112, MATH 190 or an appropriate score on a placement exam.
Special notes: Credit may not be received for both MATH 205 and MATH 180 or ENGR 101.
Textbook: Calculus, Early Transcendentals by James Stewart, seventh edition.
Learning Outcomes: Students who complete this course will be expected to describe the concept of the limit of a function and calculate limits both graphically and analytically; recognize the definition of the derivative as a limit and identify the relationship between derivatives and graphs of functions; describe the definition of the definite integral as a limit of Riemann sums and interpret the definition as an area; demonstrate understanding of the relationship between the definite integral and antiderivatives via the fundamental theorem of calculus; master the standard formulas for computing derivatives and antiderivatives of functions.
General Education Content: MATH 205 is a general education course and may not be taken pass/fail. This course satisfies the university general education requirement in the mathematics content area. Students who satisfy this requirement will demonstrate that they are able to do all of the following: represent mathematical informaiton symbolically, visually, and numerically; use arithmetic and geometric models to solve problems; interpet mathematical models such as formulas, graphs, and tables; estimate and check answers to mathematical problems, determining reasonableness and correctness of solutions.
Responsibilities: You are responsible for attending class on a regular basis and maintaining comprehension of the scheduled class objectives. You are expected to be participants in class, attend assessments, and to revise returned assessments when appropriate. Assignments are provided for your benefit and you are expected to work on them as necessary.
Special needs: Any scheduled absence during a quiz or examination, or any other special needs, must be brought to my attention during the first week of class. Unscheduled absences will be handled on a case-by-case basis, with exceptions generally made only for documented emergencies.
Calculators: Calculators are unnecessary for any in-class work, and may not be used on quizzes or examinations. Calculators will also be unnecessary for most homework problems, but may be used at your discretion. For any calculation more complicated than the evaluation of simple functions, you are expected to show your work.
Honesty: There are many resources available to help you succeed in this class, including consultation during office hours and cooperation with other students. It is important, however, that all work handed in be the result of your individual comprehension of the course material. Duplication of others' work is both a disservice to your own education and a serious violation of the university's academic honesty policy.
Grades: Homework assignments are ungraded and are provided for study purposes. Quizzes will be based on the homework problems, and will account for 30% of your grade. The three midterm examinations will each be worth 15%, and the comprehensive final examination is worth 25%. A 90% overall guarantees a grade of A–, 80% guarantees a B–, and 70% guarantees a C–. All in-class assessments except for the final exam may be revised to recover up to a quarter of the lost credit; refer to the revision instructions on page 2 of the syllabus when revising.
Changes: The syllabus is subject to change. Changes will be announced in class and updated online.

Course schedule

This schedule is tentative and may not reflect our progress at any particular time in the class; treat this as a rough guide only.

Monday Wednesday Friday
1
January 7th
Precalc review
January 9th
Precalc review and Section 2.1
2
January 12th
Section 2.2
January 14th
Section 2.3
January 16th
Section 2.3
Quiz #1
3
January 19th
MLK, Jr. day
January 21st
Section 2.4
January 23rd
Section 2.5
4
January 26th
Section 2.6
January 28th
Section 2.7
January 30th
Section 2.8
Quiz #2
5
February 2nd
Section 3.1
February 4th
Section 3.2
February 6th
Exam #1
6
February 9th
Section 3.3
February 11th
Section 3.4
February 13th
Section 3.4
Quiz #3
7
February 16th
Section 3.5
February 18th
Section 3.5
February 20th
Section 3.6
Quiz #4
8
February 23rd
Section 3.9
February 25th
Section 3.9
February 27th
Section 3.10
Quiz #5
9
March 2nd
Section 4.1
March 4th
Section 4.2/4.3
March 6th
Exam #2
10
March 9th
Withdrawl date
Section 4.3
March 11th
Section 4.4
March 13th
Section 4.4
Quiz #6
11
March 16–20
Spring break
12
March 23rd
Section 4.5
March 25th
Section 4.7
March 27th
Section 4.7
Quiz #7
13
March 30th
Section 4.8
April 1st
Section 4.9
April 3rd
Section 5.1
Quiz #8
14
April 6th
Section 5.2
April 8th
Section 5.3
April 10th
Section 5.3
Quiz #9
15
April 13th
Section 5.4
April 15th
Section 5.4
April 17th
Exam #3
16
April 20th
Section 5.5
April 22nd
Review/catchup day
April 24th
Final exam, 11:30–14:00

Schedule of assignments (through Exam #2)

Boldface problems are particularly advanced and will test problem-solving skills beyond the core of the course material.


Return to Jake's teaching.

Valid HTML 4.01 Transitional