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Annual compounding, revisited

The idea behind annual compounding is that new interest is computed
and added to the balance each year.

For a fixed-term multi-year deposit, this works, but what if we want to
withdraw our money several months into a year?

One thing we could do differently is to compute a smaller chunk of
interest more often.
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Smaller interest, more often

A multiple-computation study

Suppose we want to compute and add in interest quarterly on a $1000
balance with an annual interest rate of 5%, and want to know what
the balance is after a full year.

Recall that for annual compounding we just did a simple interest
calculation for each individual year. Now we do a simple interest
calculation for each quarter (so t = 0.25):

F1 = 1000.00 + 1000.00 x 0.05 x 0.25 = 1012.50

F, = 1012.50 + 1012.50 x 0.05 x 0.25 ~ 1025.16

F3 ~ 1025.16 + 1025.16 x 0.05 x 0.25 ~ 1037.97

Fq ~ 1037.97 + 1037.97 x 0.05 x 0.25 ~ 1050.95

so after a year the balance will be $1050.95. Note that this is more
than the nominal 5% per year in the interest rate!
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Why compute interest more frequently?

There are two consequences of the calcluation we did in the last slide
which are relevant:

> intermediary-stage values are now known; for instance, the
balance halfway through the year was $1025.16.

» the actual interest was higher than if it were compounded
annually.

The first effect is undeniably good; the second maybe seems
deceptive, but can be addressed with proper information.
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Simplifying our calculations

Same study, but with less button-mashing

How can we simplify that calculation of quarterly interest on a $1000
balance with an annual interest rate of 5% for a full year?

Recall that the first calculation looked like this:
F; = 1000.00 + 1000.00 x 0.05 x 0.25 = 1012.50
which simplifies to F; = 1000 x (1 + 0.05 x 0.25).

We want to apply that same multiplicative factor four times, so we
might compute:

F = 1000 x (1+ 0.05 x 0.25)* ~ 1050.95

And for more emphasis on the “four quarters per year” aspect, we may

write it as: .
F =1000 x (1+ 22)" ~ 1050.95
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Applying our simplification

An extension of the last question

Suppose, as before, we want to compute and add in interest quarterly
on a $1000 balance with an annual interest rate of 5%, but now we
want to know what the balance is after 6 years.

As previously, we see that every quarter’s interest application is a
multiplication by 1 + %. Six years measured in quarters is 6 X 4 = 24
quarters, so we want to perform that multiplication twenty-four times:

0.05) %
F = 1000 x (1 4 T) ~ 1347.35

for a final balance of $1347.35.
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Building a formula

0.05\ &*4
F = 1000 x (1 + T) ~ 1347.35

This calculation makes use of the principal P = 1000, the annual
interest rate r = 0.05, and the lifetime t = 6, but it also uses a new
quantity n = 4, the number of compounding periods per year.

Note that the expression 0‘4& is the periodic interest rate, i.e., the
proportion of the balance returned in interest over a single
compounding period, while 6 X 4 is the lifetime measured in
compounding periods. This gives us the general formula:

tn
F=pP(1+5)
n

Sometimes the periodic interest rate is denoted by the letter i = 7,
and the number of compounding periods by m = tn.
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Example calculations

Why stop at quarters?

| take out a $500 loan whose annual interest rate of 18% is
compounded monthly. How much would | need to pay it off after 9
months? After 2 years?

In both scenarios, P =500, r = 0.18, and n = 12.
In the first scenario, since the lifetime was given in months, we could
either establish t = 1% = 0.75 or, more straightforwardly, m =9, so:
0.18°
F=500(1+——) ~571.69
12
so | would have to pay back $571.69 (of which $71.69 is interest).

In the second scenario, t = 2, giving:

0.18) 2*12
F = 500 (1 + 5 ) ~ 714.75

so | would have to pay back $714.75 (of which $214.75 is interest).
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Variations in compounding periods

In general, more frequent compounding increases the long-term

balance, but not by much!

Hypothetical comparison

9/15

Consider a $500 loan with a 18% annual interest rate. How would the
balance differ over 4 years using different compounding periods?

$1000
$900 +
$800 +
$700 +
$600 +
$500

g..Q‘.g

| L
I I I I L4
1 2 3 4
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Taking it to the limit

Diminishing returns

How does a $500 loan with a 18% annual interest rate for four years

change as we increase the number of compounding periods?

As the last slide indicated, the returns on increasing compounding

frequency decrease rapidly:
500 (1 +0.18)* ~
500 (1 + 218)%2 ~
500 (1+ 218
500 (1 4 %18)**2

~

)4><4 _

4x52

X365

500 (1 + %2) ~ 1027.03

~ 1021.74
500 (1 + %28)"">" ~ 1025.94
4
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Compounding continuously

When n is very large, the compounding becomes continuous.

There is a formula for what happens in this case too:
r\ tn
As n gets very large, P <1 + —> approaches Pe"
n

where e ~ 2.718281828459.

You won't be expected to work out continuous-compounding problems
in this course, but knowing that there is a limiting behavior is useful!
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Unveiling the truth
One disadvantage of nonannual compounding is that it conceals the

truth: 5% annual rate compounded monthly isn't actually a 5%
growth over a year!

A useful measure is the annual percentage rate (or annual percentage
yield, which describes what percentage growth actually occurs yearly
as a result of interest.

An APR example

If | borrow $1000 at 7% annual interest compounded monthly, what is
the actual percentage growth after a year?

After one year, the future value is
0.07

F = 1000 x (1 + T)12 ~ 1072.29.
- 1072.20—1000
so the growth percentage is ~~=555— ~ 7.3%.
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From the particular to the abstract

Our calculation in the last slide for the APR was

1000 x (1 + %97)12 — 1000
1000

Here 1000 was the principal, 0.07 the annual interest rate, 12 the
number of compounding periods per month, so in the abstract the
APR is

P(1+5)"-P n
Bre) =P (140)
P n
Note that the amount and lifetime of the loan are not necessary to
calculate an APR!
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One interest rate, many annual percentages

Something as simple as a “5% annual interest rate” could mean many

different things in different circumstances:
Compounded annually (1+ 2%)! —1=-5% APR.

Compounded semiannually (1 + 2%)2 —1=15.0625% APR.
Compounded quarterly (1 + %)4 — 1~ 5.0945% APR.
Compounded monthly (1 + %%2)12 -1 ~5.1162% APR.

Compounded weekly (1+ %32)%2 — 1 ~ 5.1246% APR.

: 0.05136 ~
Compounded daily (1+ 352)*° —1 ~ 5.1267% APR.

Compounded continuously €%% — 1 ~5.1271% APR.
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All the formulas in one place
Annual compounding (n = 1):
F=P(l+r)

Periodic compounding:
nt
F=p(1+2)
n

F=P(1+i)" Whereiziand m = nt
n

APR:<1+%)¢—1

Continuous compounding:

15 / 15

F = pe"
APR=¢€¢" -1
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