1. (7 points) Consider the true statement "For every real number x, if $x>2$, then $x^{2}>4$." Write its negation as a quantified statement in words or symbols and briefly explain why this new statement must be false.
2. (18 points) Find sets satisfying the conditions below, or briefly explain why it is impossible to find such sets:
(a) Sets R, S, and T such that $R \in S, S \in T$, and $S \subsetneq T$.
(b) Sets A and B such that $A \subseteq \mathbb{N}, B \subseteq \mathbb{N}$, and $A \in B$.
(c) Finite sets X, Y, and Z such that $X \subseteq Z, Y \subseteq Z,|X|=|Y|$, and $|X \cap Y|=2$.
3. (19 points) Prove that for any integer n, if $n^{2}+4 n+1$ is even, then n is odd.
4. (8 points) The statement "for any natural number n, if n has an odd number of factors, then it is a perfect square" is true. State its converse. Is the converse true or not? Briefly explain your reasoning.
5. (15 points) Prove that for integers a, b, and c, if a and c are both odd, then $a b+b c$ is even.
6. (15 points) Fill in the truth table for each of the following statements, and identify the statement as a tautology, a contradiction, or neither.
(a) $P \wedge(Q \rightarrow \sim P)$.

(b) $(P \wedge Q) \leftrightarrow(P \rightarrow \sim Q)$.

(c) $(P \rightarrow Q) \rightarrow(Q \rightarrow P)$.

7. (18 points) Prove that for any integer $n, 3 n^{2}-5 n$ is even.
